Earth Dam Design Problem

Objectives

Embankment dams come in two types the rock-filled dam and  the earth-filled dam made of compacted earth (also called an earthen dam or terrain dam). In this analysis we deal with Queensland dam. Analysis has been done using the Geo studio software and the results discussed.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Configuration

 

Properties of the earth dam 

<>

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Dam Dimensions

 

Hunfilled water

Hservice

Hfoundation

Hfilter

HC-E

Ltop

S1

S2

(m)

(m)

(m)

(m)

(m)

(m)

(m)

(m)

1.9

22.8

16

1.2

0

6.3

3.5

2.5

Material Properties

 

Material
type
Core

Undrained
cohesion,
Cu

Effective
cohesion,
C’

Effective
friction
angle, ?’

Saturated
unit
weight, γsat

Saturated
volumetric
water
content, φw

coefficient of
volume
compressibility,
mv

Saturated
permeability,
ksat

kPa

kPa

Degree

kN/m3

m3/m3

m2/kN

m/S

Core

68.5

7.6

30

21

0.41

20.5 *10-5

1*10-11

Embankment

68.5

17

26

20.5

0.33

1.6 *10-5

3*10-7

Foundation

42.6

20

34

19.8

0.29

1.1 *10-5

7.9*10-12

Filter

0

35

21.1

0.31

0

2.54*10-4

The client has requested from your design to provide your recommendations on the following points:

1) Model the earth dam in SEEP/W (GeoStudio software) and assign relevant material properties and boundary conditions. Analyze the earth dam for steady-state seepage conditions when the upstream water is at the service level. Using SEEP/W results, calculate the total seepage loss through the dam and foundation per year in m3.

This is the resultant of our geometry

  1. Draw the dam geometry using the given dimensions
  2. Define materials by clicking on
  • Define
  • Hydraulic Functions
  • Volume water content as shown
  • Select saturated/unsaturated since there may be unsaturated regions
  • Do this for all the parts i.e the core, embankment, foundation, and filter keying in the values given for each.  
  1. Define the Hydraulic conductivity in this case Silk K as shown

Picture showing the hydraulic conditions

  1. Allocate material properties to the different regions by clicking on draw the allocating the properties with the small box which appears on the cursor

The resultant diagram is as shown

2) Using the results of steady-state seepage analysis (SEEP/W), determine the total head and pore-water pressure at Points “A” and “B” under steady-state seepage conditions with upstream water at the service level. Use following relationships to define the locations of points “A” and “B”.

=3+ =5 x =2 + `=8(1+ )

where, M: mean of the final two digits of all group figures

Ex: figure 01: d ××××56, figure 02: d ××××04, and figure 03: d ××××00, M = 20

Points A and B are shown by 14 and 15 initials

The results for point A are as shown below

(we use the results below to determine the Total head and Pore water pressure of the two points)

Total head is 27.185454

Pore water pressure is 70.467748

For point B

Total head is 26.119675

Pore water pressure is 128.66465

3) Obtain two different flow nets from the above steady-state seepage analysis using SEEP/W (service water level). Using Darcy’s equation for 2-D seepage and Bernoulli’s equation, calculate the total seepage loss through the dam and foundation per year in m3 and the total head and pore-water pressure at Points “A” and “B” for each flow net.

Use only the permeability of embankment soil to estimate the total seepage loss through the dam and foundation. Compare the calculated total seepage loss, total head at A & B, and Pore-water pressure at A & B with the values obtained from SEEP/W ((1) and

(2)).and provide three possible reasons for any deviation

 

Head at B

heB= 2m

hpB= 13m

therefore total head at B

Task

= 13+2= 15m

Head at A

17+ 2

=19m

Loss in total head between points A and B

= htA- htB

19-15= 4

The gradient of total head

I= change in h÷L

4÷ 22 = 0.18

Using Darcy’s law, the rate of seepage flow:

Since i= 0.18

Q= KiA

= 10-6×i×A

= 10-6×0.18×0.2

=3.6×10-8m3/sec

Pore pressure :

Ρw= 1000kg/m3

G= 9.81 m/sec2

Pore pressure= 1000 ×9.81×water pressure

Pore pressure= 1000 ×9.81×65.413

=641,701.53

4) The council expects to minimise the seepage through the dam by selecting the best material properties for the core of the dam. Using at least four different saturated permeability values for the core of the dam, select optimal saturated permeability for the core of the dam considering the steady-state seepage loss under serviceability conditions (service water level). Typical values of the permeability of core materials are between 1 10-9 m/S and 1 10-14 m/S.

Using the Drucker-Prager assuming that the Drucker-Prager yield surface touches on the interior of the Mohr-Coulomb yield surface

Material
type
Core

Undrained
cohesion,
Cu

Effective
cohesion,
C’

Effective
friction
angle, ?’

Saturated
unit
weight, γsat

Saturated
volumetric
water
content, φw

coefficient of
volume
compressibility,
mv

Saturated
permeability,
ksat

kPa

kPa

Degree

kN/m3

m3/m3

m2/kN

m/S

Core

68.5

7.6

30

21

0.41

20.5 *10-5

1*10-11

Embankment

68.5

17

26

20.5

0.33

1.6 *10-5

3*10-7

Foundation

42.6

20

34

19.8

0.29

1.1 *10-5

7.9*10-12

Filter

0

35

21.1

0.31

0

2.54*10-4

 

The optimal saturated permeability is 7.9*10-12

5) Using SEEP/W, re-analysis the dam for steady-state seepage when the reservoir water is at the overtopping level. Calculate the total seepage loss per year in m3, total head and pore-water pressure at A & B. Compare these values when the reservoir water is at the service level and give the reasons for differences.

At A

 

At B

To calculate quantity of water escaping as seepage, following formula can be used;

Seepage water (in m3/Day) = Seepage losses (in m/Day) X Surface area of the pond (in m2)

In this case we calculate as follows:

Surface area of the pond = let’s take 40,000 m2 (Width in meter X Length in meter)

Seepage losses = 9 mm (Soil type: silt,)

Seepage water (in m3/Day) = 360m3 per day

Per year we multiply by 365 days

360×365

=131,400 m3

Head and Pore pressure is calculated as shown below

Using Darcy’s law, the rate of seepage flow:

Since i= 0.18

Q= KiA

= 10-6×i×A

= 10-6×0.18×0.8

=1.44×10-7m3/sec

Pore pressure :

Ρw= 1000kg/m3

G= 9.81 m/sec2

Pore pressure= 1000 ×9.81×water pressure

Pore pressure= 1000 ×9.81×128.66

=1,262,154.60

6) Model the earth dam in SLOPE/W and assign the relevant material properties and boundary conditions. Analyse both the upstream and downstream slopes of the dam for stability after the construction by using Morgenstern-Price, Bishop’s simplified, Janbu’s simplified, Spencer, and Fellenious (Ordinary) methods. Briefly describes the reasons for different factor of safety (FOS) values obtained from different method of analysis for a given slope. Further, provide three recommendations to increase the stability of the dam during/after construction.

Dam Details

 

Geometry after material allocation

 

The resultant geometry is as shown

 

Slice  1 – Morgenstern-Price  Method

Factor of Safety 0.133

Phi Angle 0 °

C (Strength) 17 kPa

Pore Water Pressure 0 kPa

Pore Water Force 0 kN

Pore Air Pressure 0 kPa

Pore Air Force 0 kN

Phi B Angle 0 °

Slice Width 0.55004 m

Mid-Height 1.1345 m

Base Length 0.77788 m

Base Angle -45 °

Anisotropic Strength Mod. 1

Applied Lambda 0.1

Weight (incl. Vert. Seismic) 12.792 kN

Base Normal Force -78.951 kN

Base Normal Stress -101.5 kPa

Base Shear Res. Force 13.224 kN

Base Shear Res. Stress 17 kPa

Base Shear Mob. Force 99.527 kN

Base Shear Mob. Stress 127.95 kPa

Left Side Normal Force — kN

Left Side Shear Force — kN

Right Side Normal Force -126.79 kN

Right Side Shear Force -1.5203 kN

Horizontal Seismic Force 0 kN

Point Load 0 kN

Reinforcement Load Used 0 kN

Reinf. Shear Load Used 0 kN

Surcharge Load 0 kN

Polygon Closure 1.4175 kN

Top Left Coordinate 9.6238238, 33.574449 m

Top Right Coordinate 10.173865, 35.293327 m

Bottom Left Coordinate 9.6238238, 33.574449 m

Bottom Right Coordinate 10.173865, 33.024409 m

7) Using SEEP/W & SLOPE/W, calculate the stability (FOS) of the downstream slope of the dam under steady-state conditions at both service and overtopping water levels by using Morgenstern-Price, Bishop’s simplified, Janbu’s simplified, Spencer, and Fellenious (Ordinary) methods. Provide three recommendations to increase the stability of the downstream slope of an earth dam during steady-state seepage condition.

 

Result showed that average flow rate of leakage under the different mesh size for ilam dam equal 0.836 liters per second for the entire length of the dam.

Slice  28 – Morgenstern-Price  Method

Factor of Safety 0.133

Phi Angle 0 °

C (Strength) 17 kPa

Pore Water Pressure 0 kPa

Pore Water Force 0 kN

Pore Air Pressure 0 kPa

Pore Air Force 0 kN

Phi B Angle 0 °

Slice Width 0.47777 m

Mid-Height 3.0984 m

Base Length 0.48884 m

Base Angle -12.219 °

Anisotropic Strength Mod. 1

Applied Lambda 0.1

Weight (incl. Vert. Seismic) 30.346 kN

Base Normal Force 20.614 kN

Base Normal Stress 42.169 kPa

Base Shear Res. Force 8.3103 kN

Base Shear Res. Stress 17 kPa

Base Shear Mob. Force 62.545 kN

Base Shear Mob. Stress 127.95 kPa

Left Side Normal Force 179.3 kN

Left Side Shear Force 5.5245 kN

Right Side Normal Force 122.06 kN

Results and Analysis

Right Side Shear Force 2.5302 kN

Horizontal Seismic Force 0 kN

Point Load 0 kN

Reinforcement Load Used 0 kN

Reinf. Shear Load Used 0 kN

Surcharge Load 0 kN

Polygon Closure 0.44226 kN

Top Left Coordinate 22.566704, 28.314712 m

Top Right Coordinate 23.04447, 26.987585 m

Bottom Left Coordinate 22.566704, 24.604509 m

Bottom Right Coordinate 23.04447, 24.501045 m

Results showing summary of safety factor for stability SEEP/W & SLOPE/W analysis:

Figure displayed are according to simulation results:

Method of analysis

Upstream slope after construction

Downstream slope after construction

Upstream slope in steady stage leakage

Downstream slope in steady state leakage

Sudden drop in reservoir water level  

Jambu simplified method

1.9282

1.8170

1.7119

1.8891

1.9101

Bishop simplified method

2.0191

2.2812

1.8101

2.0101

2.1910

Morgenstern price method

2.2282

2.4722

1.9191

1.9191

2.2292

Fellenious (Ordinary) method

1.8190

2.1282

1.7171

1.7181

1.9191

FOS= 20.6

8) To satisfy the peak water demand of a dry season, water in the reservoir is proposed to release to the water treatment plant in very short time (sudden drawdown). Calculating the stability of upstream slope during drawdown using SEEP/W and SLOPE/W, estimate the safest rapid drawdown level of the reservoir using at least four drawdown levels to ensure the stability of the dam during this operation using Morgenstern-Price method. Assume that 30 days are required to dissipate the excess pore-water pressure from the dam after the rapid-drawdown operation.

Slice  30 – Morgenstern-Price  Method

Factor of Safety 0.133

Phi Angle 0 °

C (Strength) 17 kPa

Pore Water Pressure 0 kPa

Pore Water Force 0 kN

Pore Air Pressure 0 kPa

Pore Air Force 0 kN

Phi B Angle 0 °

Slice Width 0.47777 m

Mid-Height 0.62487 m

Base Length 0.48399 m

Base Angle -9.2007 °

Anisotropic Strength Mod. 1

Applied Lambda 0.1

Weight (incl. Vert. Seismic) 6.1201 kN

Base Normal Force -3.1412 kN

Base Normal Stress -6.4902 kPa

Base Shear Res. Force 8.2279 kN

Base Shear Res. Stress 17 kPa

Base Shear Mob. Force 61.925 kN

Base Shear Mob. Stress 127.95 kPa

Left Side Normal Force 62.098 kN

Left Side Shear Force 0.64716 kN

Right Side Normal Force — kN

Right Side Shear Force — kN

Horizontal Seismic Force 0 kN

Point Load 0 kN

Reinforcement Load Used 0 kN

Reinf. Shear Load Used 0 kN

Surcharge Load 0 kN

Polygon Closure 0.98186 kN

Top Left Coordinate 23.522235, 25.660457 m

Top Right Coordinate 24.000001, 24.33333 m

Bottom Left Coordinate 23.522235, 24.410717 m

Bottom Right Coordinate 24.000001, 24.33333 m

The rapid drawdown condition arises when submerged slopes experience a rapid

reduction of the external water level. In a coupled analysis, the magnitude of pore pressure changes depends on the stress-strain behavior of the soil skeleton. In the analysis presented here several elastic soil moduli are consid-ered ( E= 10,000 MPa, 1000 MPa and 100 MPa).

Using the formula

Z0= 2c/y

Y=30

Z0= safest rapid drawdown

Z0= 2× 10,000/20

= 1,000

References

Kamanbedast, A., & Delvari, A. (2012). Analysis of earth dam: Seepage and stability using ansys and geo-studio software. World Applied Sciences Journal, 17(9), 1087-1094.

Maula, B. H., & Zhang, L. (2011). Assessment of embankment factor safety using two commercially available programs in slope stability analysis. Procedia Engineering, 14, 559-566.

Eugster, H., & Nebiker, S. (2008). UAV-based augmented monitoring-real-time georeferencing and integration of video imagery with virtual globes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(PART B1).

Gopal, P., & Kumar, D. T. K. (2014). Slope stability and seepage analysis of earthern dam of a summer storage tank: A case study by using different approches. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 1(12).

Hakkarainen, M., Woodward, C., & Rainio, K. (2009, October). Software architecture for mobile mixed reality and 4D BIM interaction. In Proc. 25th CIB W78 Conference (pp. 1-8).

Hasani, H., Mamizadeh, J., & Karimi, H. (2013). Stability of slope and seepage analysis in earth fills dams using numerical models (Case Study: Ilam Dam-Iran). World Applied Sciences Journal, 21(9), 1398-1402.

Tatewar, S. P., & Pawade, L. N. (2012). Stability analysis of earth dam by geostudio software. Int. J. civ. Eng. Technol, 3.

Mohammed, M., & Wan, L. (2015). Slope stability analysis of Southern slope of Chengmenshan copper mine, China. International Journal of Mining Science and Technology, 25(2), 171-175.

Kamanbedast, A., & Delvari, A. (2012). Analysis of earth dam: Seepage and stability using ansys and geo-studio software. World Applied Sciences Journal, 17(9), 1087-1094.

Tatewar, S. P., & Pawade, L. N. (2012). Stability analysis of earth dam by geostudio software. Int. J. civ. Eng. Technol, 3.

Gopal, P., & Kumar, D. T. K. (2014). Slope stability and seepage analysis of earthern dam of a summer storage tank: A case study by using different approches. International Journal of Innovative Research in Advanced Engineering (IJIRAE), 1(12).

Arshad, I., Babar, M. M., & Javed, N. (2017). Numerical Analysis of Seepage and Slope Stability in an Earthen Dam by Using Geo-Slope Software. PSM Biological Research, 2(1), 13-20.

Pham, H. T., Oo, H. Z., & Jing, C. (2013). Stability Of slope And Seepage analysis in earth dam using numerical finite element model. Study of Civil Engineering and Architecture.

Zhang, L. M., Xu, Y., Liu, Y., & Peng, M. (2013). Assessment of flood risks in Pearl River Delta due to levee breaching. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 7(2), 122-133.

Kirra, M. S., Shahien, M., Elshemy, M., & Zeidan, B. A. (2015). Seepage and Slope Stability Analysis of Mandali Earth Dam, Iraq: A Case Study. In International Conference on Advances in Structural and Geotechnical Engineering, Hurghada, Egypt.

PS, M. A., & Balan, T. A. Numerical Analysis of Seepage in Embankment Dams.

Mouyeaux, A., Carvajal, C., Peyras, L., Bressolette, P., Breul, P., & Bacconnet, C. (2015). Probability of failure of an embankment dam due to slope instability and overtopping. Russell Michael G, Marc B, Pedro M, Laurent M, 9-11.

Soleimani, S., & Asakereh, A. (2014). EVALUATION OF STATIC STABILITY OF EARTH DAMS USING GEOSTUDIO SOFTWARE (CASE STUDY: NIAN DAM, IRAN). Annals of the Faculty of Engineering Hunedoara, 12(3), 265.

Tatewar, S. P., & Pawade, L. N. (2012). Stability Analysis of Bhimdi Earth Dam. IJEIR, 1(6), 524-527.

Ambikaipahan, R. (2011). Failure of an Earth Dam.

Ghosh, B., & Prasad, S. K. FINITE ELEMENT ANALYSIS OF EARTH DAMS UNDER SEISMIC CONDITION.

Afiri, R., Abderrahmane, S. H., Djerbal, L., & Gabi, S. (2017, July). Stability Analysis of Souk-Tleta Earth Dam, North Algeria. In International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology” (pp. 32-40). Springer, Cham.

Kirra, M. S., Zeidan, B. A., Shahien, M., & Elshemy, M. Seepage Analysis of Walter F. George Dam, USA: A case Study.

Kirra, M. S., Zeidan, B. A., Shahien, M., & Elshemy, M. Seepage Analysis of Walter F. George Dam, USA: A case Study.

Kundagol, P. K., Manjunath, K. V., & Prabhakara, R. DYNAMIC SLOPE STABILITY ANALYSIS OF BLACK COTTON SOIL STABILIZED WITH GGBS AND LIME.

Aein, N. (2015). Evaluating the Behavior of Geogrid-Reinforced Earth Dams under Static and Dynamic Loads. European Online Journal of Natural and Social Sciences: Proceedings, 4(3 (s)), pp-867.

Gabi, S. (2017, July). Stability Analysis of Souk-Tleta Earth Dam, North Algeria. In Numerical Analysis of Nonlinear Coupled Problems: Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures (p. 32). Springer.

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Services offered

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code ESSAYHELP