ATM Information Security: Requirements And Examples

Integrity Requirement in ATMs

ATM or Automated Teller Machines are so designed that there should be no issues with information security and the users could easily get a particular personal identification number or PIN for accessing their accounts in banks (Peltier, 2013). The detailed descriptions of these three requirements with examples are given below:

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
  1. Confidentiality: Confidentiality can be roughly stated as privacy. The various measures that are undertaken for ensuring confidentiality in ATM are designed for the prevention of sensitive information from reaching to the wrong people (Von Solms & Van Niekerk, 2013). The access of these ATM cards and PIN numbers should be absolutely restricted and limited to only those who are authorized. There are several examples of confidentiality associated in these systems. These examples are as follows:
  2. The first example for ensuring confidentiality is the account number or any routing number when internet banking is executed. Data encryption is the most common method to ensure confidentiality. The unique username as well as passwords help to differentiate the authorized user.
  3. The second example of confidentiality in ATM machines is that the particular card should be present and without it, no transaction is done (Siponen, Mahmood & Pahnila, 2014).
  4. Two distinct kinds of breaching of confidentiality are possible in ATM. One of them is while the credentials of the authorized user are being stolen and the second is while the employee detail of any organization is being breached.
  5. Integrity: The second requirement that is solely associated with the ATM system is integrity. It helps to maintain the accuracy, consistency as well as trustworthiness of any specific data (De Gramatica et al., 2015).

The examples of integrity requirement are given below:

  1. a) The data should not be changed without the permission of the authorized user.
  2. b) The sudden or accidental deletion of data of ATM also affects the data integrity.
  3. c) The particular people who maintain the data should search for some measures to implement data integrity.

Availability: The third significant requirement in ATM is the availability. It roughly refers to maintenance of the hardware or information that is being involved while doing any transaction (Andress, 2014). This hardware is the most important factor in the ATM machine. It is connected with software and thus, this hardware is checked with proper system up gradation.

The examples of availability in an ATM machine are given below:

  1. a) The systems that are being utilized while executing any transaction.
  2. b) DoS attacks should be prevented while maintaining availability.
  3. c) The information availability refers to the information required while making a transaction.

A thief has broken into an ATM or an Automated Teller Machine by utilizing a screwdriver and thus was successful in jamming the ATM card reader. He even broke the five distinct keys from keypad. He was extremely confident regarding his approach towards stealing the money from that Automated Teller Machine or ATM.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

Although, this particular thief had to stop his entire process of ATM machine breaking off. A customer came in between to withdraw some cash. For this purpose, the thief had to hide. The customer was not able to spot the thief.

He came inside the Automated Teller Machine or ATM and entered his ATM card within the machine. This customer then, entered his respective four digits PIN within the machine and was also successful in withdrawing out some cash from his bank account. Next, he tried to take out the ATM card from the machine. As the card reader of the Automated Teller Machine was jammed beforehand, he was unable to complete this procedure. His ATM card was jammed within the machine and he went out to call someone for help.

During this period, the thief came out. He took the decision to find out the unique PIN of the customer for the purpose of stealing money from that account. He tried many times and there is a specific procedure to find out the PIN number of the customer.

The following steps clearly depict the maximum number of PINs or personal identification numbers, this particular thief is required to enter, before successfully discovering the correct PIN of that customer.

There are four keys in any PIN number. Therefore, these four keys could be utilized with the combination of probabilities.

Examples of Integrity Requirement in ATMs

The total number of probabilities or possibilities, which the particular thief present within the Automated Teller Machine or ATM could enter, is given below:

5P4 = 5!/(5 – 4)! = 5!/4! = 120.

Thus, the thief can enter 120 ways or possibilities for detecting the ATM PIN of the customer.

Various security measures are present in all Automated Teller Machines and each of them is unique in nature. The most significant limitation or restriction within an ATM card is that the user is allowed to enter only 3 times. After those three times, if the user is unsuccessful in giving the correct card number, the specific card would be blocked.

Bio-metric authentication can be defined as the security process, which solely relies on the specific or unique characteristics that are biological of any person or individual. It is considered as one of the safest modes of verification of all persons (Grama, 2014). The systems for bio-metric authentication are utilized for comparing any biometric data or information that is already being captured within the system.

A database is present within the system and this database stores or captures the biometric data of that particular individual (Sayed et al., 2013). As soon as the authorized person enters his biological characteristic within the system, the database matches that data with the existing database. If that data is matched, then only, the person is allowed to enter or the bio-metric authentication is confirmed. Eventually, this bio-metric authentication is utilized for the successful management of access to any type of physical devices or digital resources like computing systems or buildings. Several, offices, schools and colleges have implemented this particular type of authentication for allowing or identifying their employees or students (Bhagavatula et al., 2015). The most significant and popular examples of biometric authentication systems are the fingerprint recognition, retina scans, face recognition, voice recognition and many more.

However, in spite of having such vast and beneficial advantages, there are few reasons that people do not want to utilize this system. Following are the three important and significant reasons that why people are still reluctant to utilize bio-metric system with the methods of countering these problems.

  1. Cannot Be Reset: This is the first and the foremost reason, why people are always reluctant to use the bio-metric authentication for their devices or buildings. Once, the bio-metric data is being entered within the system, it is very difficult to change or compromise with that data. Hence, the users do not want to use this system (Frank et al., 2013). This is more relevant when the users have bio-metric authentication in their computing devices or phones. For any reason, if the phone or the laptop cannot recognize the biometric feature of the user, they will not be able to open them.

For solving this particular problem, the way out is to keep another trustworthy person for identifying or unlocking the devices. Moreover, there is an additional option of resetting the password without much complexity. They could simply reset their passwords with the help of PCI-DDS, HIPAA and Sarbanes-Oxley regulations.

  1. Need of Additional Hardware: This type of problem is faced in offices or buildings. The system for biometric authentication is to be installed within the office for successfully executing the biometric authentication (He & Wang, 2015). People are reluctant as they feel that this is an extra cost for them.

Availability Requirement in ATMs

For removing this type of objection, cost effective hardware could be implemented. Many of them are available in the market and thus could be used by the users.

2. Lack of Accuracy: Bio-metric systems are not always 100% accurate and thus they are not being used by the users.

For solving this problem, FAR or FRR metrics could be utilized. False Acceptance Rate and False Rejection Rate are probabilities that help in determining the accuracy.

Biometric authentication is the technical term for identifying any particular or specific person in terms of their biological characteristics. This type of authentication system is utilized in any type of offices, buildings, schools and colleges (Chaudhry et al., 2015). Biometric authentication is also utilized for the purpose of locking or unlocking any computing device of any particular individual or person.

The identifiers of biometric are the distinctive and measurable features that are utilized for labelling as well as describing the individuals. These identifiers of biometric are solely categorized as the behavioural and physiological features or characteristics. The most significant examples of physiological characteristics are explicitly related to the body shape of any specific person (Lu et al., 2015). The most significant examples of these physiological characteristics of a person mainly include face recognition, voice recognition, DNA identification, fingerprint recognition, retina scan, palm scan, iris recognition, hand geometry and many more. The behavioural characteristics of that of an individual mainly include the pattern of how a person behaves, gait, voice, typing rhythm and many more.

Although, biometric authentication comprises of various advantages, there are few disadvantages of this particular system. The false positive rates and the false negative rates could be substantially tuned as per the given requirement. These false positive rates and the false negative rates are most of the times complementary to each other, which means it lowers one another (Xu, Zhou & Lyu, 2014). There can be various such situations, where the false negative rates have turned down to false positive rates and thus are termed as extremely serious and dangerous. The false negative rates occur when the biometric systems eventually fail in recognizing the authorized and authenticated users.

Following are the two such circumstances, where the false negative rates have been more serious as well as dangerous than the false positive rates.

  1. Access to Own Possession: The first circumstance occurs when the owner of an expensive object could be prevented from being accessed to his own object and thus leading him or her to such a situation that he is not being able to access his own possession. This type of situation is extremely dangerous as the person might need his possession effective immediately and thus it could be termed as false negative rate (Andress, 2014). This particular of problem occurs when the biometric authentication system does not respond perfectly and thus is termed as the most significant problem in terms of security. The way to get out from this type of situation is very problematic and thus often users are reluctant to use this system.
  2. Failing to Recognize Patients: This is the second important circumstance where the false negative rates are extremely dangerous than the false positive rates. Suppose, a patient has suffered a cardiac arrest and the doors of his house are locked with biometric authentication (Bhagavatula et al., 2015). He is unable to visit to the doctors or the doctors are unable to reach him since they could not open up the doors. This is an extremely dangerous situation and thus the false negative rates are more dangerous in this type of situation.

1st part

Transposition is the best method for encrypting any text. In cryptography, the transposition cipher is the procedure through which the specific positions that are being held by the units of the plaintext are being moved as per any specific regular system (Rewagad & Pawar, 2013). The plaintext refers to all the common characters or the collection of characters. The cipher text comprises of the permutation of a plaintext. One of the best forms of transposition cipher is the rail fence cipher. The name itself suggests how the cipher method works or does its job. The most significant benefit of the columnar transposition over the substitution encryption methodology is that all the algorithms required here could be utilized as many times required. In case of the substitution method, this particular feature is absent. For example, the decryption of the cipher text with the columnar transposition could be utilized twice on any plain text (Singh, 2013).  There is a distinct procedure or deciphering any encrypted text. Following are the two steps for decrypting a cipher.

  1. At first, the user has to look at the column length by simply sub dividing this length with the help of key length.
  2. The second step is that the message is next written within the columns once again and finally the key becomes successful in retransforming the columns (Xu, Zhou & Lyu, 2014).

Examples of Availability Requirement in ATMs

Thus, with the help of columnar transposition, any cipher text could be easily as well as quickly determined.

2nd part

George’s company for preventing the leakage of any type of information while transmission, George decided to send the instructions completely encrypted under Caesar cipher by following one after another.

The substitution key is 234 and the cipher text is NTJWKHXK AMK WWUJJYZTX MWKXZKUHE.

After utilizing the algorithm of Caesar cipher and substitution, the given encrypted text could be decrypted as:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Encrypted Text

N

T

J

W

K

H

X

K

Numeric value

14

20

10

23

11

8

24

11

Substitution Key

2

3

4

2

3

4

2

3

Decoded from the substitution cipher

12

17

6

21

8

4

22

8

Shifting as Caeser cipher

3

3

3

3

3

3

3

3

Decoded from Caeser cipher

9

14

3

18

5

1

19

5

Decoded Text

I

N

C

R

E

A

S

E

Encrypted Text

A

M

K

Corresponding numeric value

1

13

11

Substitution Key

4

2

3

Decoded from substitution cipher

23

11

8

Shifting as Caeser cipher

3

3

3

Decoded from caeser cipher

20

8

5

 Decoded Text

T

H

E

Encrypted Text

W

W

U

J

J

Y

Z

T

X

Corresponding numeric value

23

23

21

10

10

25

26

20

24

Substitution Key

4

2

3

4

2

3

4

2

3

Decoded from substitution cipher

19

21

18

6

8

22

22

18

21

Caeser cipher shift

3

3

3

3

3

3

3

3

3

Decoded from caeser cipher

16

18

15

3

5

19

19

15

18

Decoded Text

P

R

O

C

E

S

S

O

R

Encrypted Text

M

W

K

X

Z

K

U

H

E

Corresponding numeric value

13

23

11

24

26

11

21

8

5

Substitution Key

4

2

3

4

2

3

4

2

3

Decoded from substitution cipher

9

21

8

20

24

8

17

6

2

Shifting Caeser cipher

3

3

3

3

3

3

3

3

3

Decoded from caeser cipher

6

18

5

17

21

5

14

3

25

Decoded Text

F

R

E

Q

U

E

N

C

Y

Therefore, The Decrypted Text For The Given Text Of Ntjwkhxk Amk Wwujjyztx Mwkxzkuhe Is

Increase The Processor Frequency.

References

Andress, J. (2014). The basics of information security: understanding the fundamentals of InfoSec in theory and practice. Syngress.

Bhagavatula, C., Ur, B., Iacovino, K., Kywe, S. M., Cranor, L. F., & Savvides, M. (2015). Biometric authentication on iphone and android: Usability, perceptions, and influences on adoption. Proc. USEC, 1-2.

Chaudhry, S. A., Mahmood, K., Naqvi, H., & Khan, M. K. (2015). An improved and secure biometric authentication scheme for telecare medicine information systems based on elliptic curve cryptography. Journal of Medical Systems, 39(11), 175.

De Gramatica, M., Labunets, K., Massacci, F., Paci, F., & Tedeschi, A. (2015, March). The role of catalogues of threats and security controls in security risk assessment: an empirical study with ATM professionals. In International Working Conference on Requirements Engineering: Foundation for Software Quality (pp. 98-114). Springer, Cham.

Frank, M., Biedert, R., Ma, E., Martinovic, I., & Song, D. (2013). Touchalytics: On the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE transactions on information forensics and security, 8(1), 136-148.

Grama, J. L. (2014). Legal issues in information security. Jones & Bartlett Publishers.

He, D., & Wang, D. (2015). Robust biometrics-based authentication scheme for multiserver environment. IEEE Systems Journal, 9(3), 816-823.

Lu, Y., Li, L., Peng, H., & Yang, Y. (2015). An enhanced biometric-based authentication scheme for telecare medicine information systems using elliptic curve cryptosystem. Journal of medical systems, 39(3), 32.

Peltier, T. R. (2013). Information security fundamentals. CRC Press.

Peltier, T. R. (2016). Information Security Policies, Procedures, and Standards: guidelines for effective information security management. CRC Press.

Rewagad, P., & Pawar, Y. (2013, April). Use of digital signature with diffie hellman key exchange and AES encryption algorithm to enhance data security in cloud computing. In Communication Systems and Network Technologies (CSNT), 2013 International Conference on (pp. 437-439). IEEE.

Sayed, B., Traoré, I., Woungang, I., & Obaidat, M. S. (2013). Biometric authentication using mouse gesture dynamics. IEEE Systems Journal, 7(2), 262-274.

Singh, G. (2013). A study of encryption algorithms (RSA, DES, 3DES and AES) for information security. International Journal of Computer Applications, 67(19).

Siponen, M., Mahmood, M. A., & Pahnila, S. (2014). Employees’ adherence to information security policies: An exploratory field study. Information & management, 51(2), 217-224.

Von Solms, R., & Van Niekerk, J. (2013). From information security to cyber security. computers & security, 38, 97-102.

Xu, H., Zhou, Y., & Lyu, M. R. (2014, July). Towards continuous and passive authentication via touch biometrics: An experimental study on smartphones. In Symposium On Usable Privacy and Security, SOUPS (Vol. 14, pp. 187-198).

What Will You Get?

We provide professional writing services to help you score straight A’s by submitting custom written assignments that mirror your guidelines.

Premium Quality

Get result-oriented writing and never worry about grades anymore. We follow the highest quality standards to make sure that you get perfect assignments.

Experienced Writers

Our writers have experience in dealing with papers of every educational level. You can surely rely on the expertise of our qualified professionals.

On-Time Delivery

Your deadline is our threshold for success and we take it very seriously. We make sure you receive your papers before your predefined time.

24/7 Customer Support

Someone from our customer support team is always here to respond to your questions. So, hit us up if you have got any ambiguity or concern.

Complete Confidentiality

Sit back and relax while we help you out with writing your papers. We have an ultimate policy for keeping your personal and order-related details a secret.

Authentic Sources

We assure you that your document will be thoroughly checked for plagiarism and grammatical errors as we use highly authentic and licit sources.

Moneyback Guarantee

Still reluctant about placing an order? Our 100% Moneyback Guarantee backs you up on rare occasions where you aren’t satisfied with the writing.

Order Tracking

You don’t have to wait for an update for hours; you can track the progress of your order any time you want. We share the status after each step.

image

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

Areas of Expertise

Although you can leverage our expertise for any writing task, we have a knack for creating flawless papers for the following document types.

image

Trusted Partner of 9650+ Students for Writing

From brainstorming your paper's outline to perfecting its grammar, we perform every step carefully to make your paper worthy of A grade.

Preferred Writer

Hire your preferred writer anytime. Simply specify if you want your preferred expert to write your paper and we’ll make that happen.

Grammar Check Report

Get an elaborate and authentic grammar check report with your work to have the grammar goodness sealed in your document.

One Page Summary

You can purchase this feature if you want our writers to sum up your paper in the form of a concise and well-articulated summary.

Plagiarism Report

You don’t have to worry about plagiarism anymore. Get a plagiarism report to certify the uniqueness of your work.

Free Features $66FREE

  • Most Qualified Writer $10FREE
  • Plagiarism Scan Report $10FREE
  • Unlimited Revisions $08FREE
  • Paper Formatting $05FREE
  • Cover Page $05FREE
  • Referencing & Bibliography $10FREE
  • Dedicated User Area $08FREE
  • 24/7 Order Tracking $05FREE
  • Periodic Email Alerts $05FREE
image

Services offered

Join us for the best experience while seeking writing assistance in your college life. A good grade is all you need to boost up your academic excellence and we are all about it.

  • On-time Delivery
  • 24/7 Order Tracking
  • Access to Authentic Sources
Academic Writing

We create perfect papers according to the guidelines.

Professional Editing

We seamlessly edit out errors from your papers.

Thorough Proofreading

We thoroughly read your final draft to identify errors.

image

Delegate Your Challenging Writing Tasks to Experienced Professionals

Work with ultimate peace of mind because we ensure that your academic work is our responsibility and your grades are a top concern for us!

Check Out Our Sample Work

Dedication. Quality. Commitment. Punctuality

Categories
All samples
Essay (any type)
Essay (any type)
The Value of a Nursing Degree
Undergrad. (yrs 3-4)
Nursing
2
View this sample

It May Not Be Much, but It’s Honest Work!

Here is what we have achieved so far. These numbers are evidence that we go the extra mile to make your college journey successful.

0+

Happy Clients

0+

Words Written This Week

0+

Ongoing Orders

0%

Customer Satisfaction Rate
image

Process as Fine as Brewed Coffee

We have the most intuitive and minimalistic process so that you can easily place an order. Just follow a few steps to unlock success.

See How We Helped 9000+ Students Achieve Success

image

We Analyze Your Problem and Offer Customized Writing

We understand your guidelines first before delivering any writing service. You can discuss your writing needs and we will have them evaluated by our dedicated team.

  • Clear elicitation of your requirements.
  • Customized writing as per your needs.

We Mirror Your Guidelines to Deliver Quality Services

We write your papers in a standardized way. We complete your work in such a way that it turns out to be a perfect description of your guidelines.

  • Proactive analysis of your writing.
  • Active communication to understand requirements.
image
image

We Handle Your Writing Tasks to Ensure Excellent Grades

We promise you excellent grades and academic excellence that you always longed for. Our writers stay in touch with you via email.

  • Thorough research and analysis for every order.
  • Deliverance of reliable writing service to improve your grades.
Place an Order Start Chat Now
image

Order your essay today and save 30% with the discount code ESSAYHELP